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Compulsory Part

1. Yes. In fact, F [x]/(x − a) ∼= F for any a ∈ F . This is due to the first isomorphism
theorem, one can define the evaluation map ϕ : F [x] → F by ϕ(f(x)) = f(a). This
is clearly a surjective ring homomorphism, as ϕ(k) = k for any k ∈ F . Therefore, it
suffices to show that kerϕ = (x− a).

Let f(x) ∈ (x − a), i.e. f(x) = (x − a)g(x) for some polynomial g ∈ F [x], then
ϕ(f(x)) = f(a) = (a− a)g(a) = 0, so f(x) ∈ kerϕ.

Conversely, let f(x) ∈ kerϕ, then f(a) = 0. Write f(x) =
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Now f(a) = 0 implies that there is no i = 0 term, i.e. the coefficient of (x − a)0 is 0.
Therefore f(x) =
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a)i−1, so f(x) ∈ (x− a) as desired.

Since F [x]/(x−a) ∼= F regardless of what a ∈ F is, we have F [x]/(x−a) ∼= F [x]/(x−
b).

2. (a) Not isomorphic. We can simply consider the additive groups of the quotient rings,
which are quotient groups. We will simply show that they have finite but different
order, so has no hope of being isomorphic.
In fact, we will prove something that is more general. Consider F a field, and the
principal ideal (f(x)) ⊂ F [x]. The claim is that cosets of (f(x)) are represented
by polynomials of degree smaller than or equal to deg f(x). This is simply due to
division algorithm, any coset p(x) + (f(x)) is equal to some r(x) + (f(x)) with
deg r < deg f . And if r1 ̸= r2, then they represent different cosets.
In our case, this implies that Z2[x]/(x

2+1) has order 4 since there are 4 polynomials
of degree less than 2, i.e. 0, 1, x and x+1; and Z2[x]/(x

3+1) has cardinality 8 since
there are 8 polynomials of degree less than 3, namely 0, 1, x, x+1, x2, x2+1, x2+x
and x2 + x+ 1.

(b) Yes they are isomorphic. Consider ϕ : R[x] → R[x]/(x2 − 2x + 1) by ϕ(x) =
x− 1 + ((x2 − 2x+ 1). This defines a homomorphism because for any polynomial
p(x) =

∑n
i=0 aix

i, one can define ϕ(p(x)) =
∑n

i=0 ai(x − 1)i + (x2 − 2x + 1) =
p(x− 1) + (x2 − 2x+ 1). And it is clear that if f(x) = p(x)q(x), then f(x− 1) =
p(x − 1)q(x − 1). It suffices to prove that it is surjective and has kernel given by
(x2). Clearly the map is surjective, since any element f(x) + (x2 − 2x + 1) ∈
R[x]/(x2−2x+1) is the image of f(x+1). Now kerϕ contains those f(x) ∈ R[x]
so that f(x − 1) ∈ (x2 − 2x + 1). This is equivalent to x2 − 2x + 1 being a factor
of f(x− 1), hence it is the same as x2 being a factor of f(x). So kerϕ = (x2).



(c) Not isomorphic. In Q[x]/(x2) there is a nonzero element that squares to 0, i.e.
x + (x2) satisfies x2 + (x2) = 0. We claim that such an element does not exist in
Q[x]/(x2 − 1). If f(x) + (x2 − 1) squares to 0, then f(x)2 is divisible by x2 − 1.
Therefore, f(x)2 is divisible by both x + 1, x − 1, so f(1)2 = f(−1)2 = 0. In
particular, f(1) = f(−1) = 0 must also be true. Then f(x) is divisible by x2 − 1 =
(x+1)(x− 1), then f(x) + (x2 − 1) is simply 0. If the rings were isomorphic, then
there the image of x + (x2) would be a nonzero element that squares to 0, so such
an isomorphism does not exist.

(d) They are isomorphic. We have already seen that R[x]/(x2 + 1) ∼= C from the
lecture. It suffices to do the same for the other ring. Consider ϕ : R[x] → C

defined by ϕ(x) =
√
2i. This clearly defines a ring homomorphism. It is surjective

because ϕ(a+ bx/
√
2) = a+ bi ∈ C for arbitrary a, b ∈ R. It suffices to show that

kerϕ = (x2 + 2).
If f(x) ∈ kerϕ, then f(

√
2i) = 0, so that x −

√
2i is a complex factor of f(x).

Now f(x) ∈ R[x] implies that x+
√
2i is another complex factor of f(x), therefore

(x+
√
2i)(x−

√
2i) = x2+2 is a real factor of f(x), so f(x) ∈ (x2+2). Conversely,

if f(x) ∈ (x2 + 2), clearly f(
√
2i) = 0.

By the first isomorphism theorem, we have R[x]/(x2 + 2) ∼= C as desired.

3. (a) Since Q ⊂ C, we may realize Q[
√
d] is the image of Q[x] → C defined by x 7→

√
d,

so it is a subring. Being a subring of a field, it is automatically an integral domain,
otherwise the existence of zero divisors would contradict to the fact that C is a field.

(b) For any α = a + b
√
d ∈ Q[

√
d], define α = a − b

√
d. Note that αα = (a +

b
√
d)(a − b

√
d) = a2 − b2d = N(α) = N(α). Also we have αβ = α · β, as

(a− b
√
d)(e− f

√
d) = ae+ bfd− (af + be)

√
d), whereas (a+ b

√
d)(e+ f

√
d) =

ae+ bfd+ (af + be)
√
d.

Therefore, for any α, β ∈ Q[
√
d], we have N(αβ) = αβαβ = N(α)N(β).

Finally, N(α) = αα = 0 implies that α = 0 or α = 0 as Q[
√
d] is an integral

domain. If α = a− b
√
d = 0 then a = b = 0, so α = 0 regardless.

(c) From argument similar to Tutorial 9 Q6, Q[
√
d] is the smallest subring containing

Q and
√
d. It suffices to check that it is also a field. Indeed, if a + b

√
d ̸= 0, then

0 ̸= N(α) ∈ Q, so that x = α/N(α) satisfies xα = αα/N(α) = 1. So every
nonzero element is invertible.

(d) This is essentially part of part (a), we have a surjective homomorphism ϕ : Q[x] →
Q[

√
d] ⊂ C. It suffices to verify that kerϕ = (x2 − d) and apply the first isomor-

phism theorem. Let f(x) ∈ kerϕ, then f(
√
d) = 0, so x −

√
d is a complex factor

of f(x). Now
√
d 7→ −

√
d defines a field automorphism of Q[

√
d] which fixes Q,

therefore we also have f(−
√
d) = 0 and x+

√
d is also a complex factor of f . Then

x2 − d = (x+
√
d)(x−

√
d) is a rational factor of f(x), so f(x) ∈ (x2 − d).

Conversely if f(x) = (x2− d)p(x) for some polynomial p, then clearly f(
√
d) = 0,

so f ∈ kerϕ.

4. (a) The image of f(x) in Z2 is f̄ = x3 + x+ 1, note that f̄(0) = f̄(1) = 1, so it has no
root in Z2, so it has no linear factor. Therefore it must be irreducible over Z2, so it
is irreducible over Z, so it is irreducible over Q by Gauss’ theorem.



(b) If x4+x2+x+1 has a rational root, by proposition 12.1.1, it must be ±1, clearly both
are not roots. Therefore, if it is reducible over Z, it is a product of two irreducible
degree 2 factors. Suppose x4 + x2 + x + 1 = (x2 + ax ± 1)(x2 + bx ± 1) =
x4 + (a+ b)x3 + (ab± 2)x2 + (±a± b)x+1. Therefore b = −a, and −a2 ± 2 = 1,
so the only possibility is a2 = 1, and a = ±1. But then ±a ± b = 0, this gives a
contradiction. Therefore x4 + x2 + x + 1 is irreducible over Z, so it is irreducible
over Q by Gauss’ theorem.

(c) Consider f(x+1) = 4(x+1)3−6(x+1)−1 = 4x3+12x2+12x+4−6x−6−1 =
4x3+12x2+6x−3. Then 3 is a prime that divide all the non-leading coefficients, and
9 does not divide the constant coefficient −3. Therefore we can apply Eisenstein’s
criterion to conclude that f(x + 1) (and hence f(x)) is irreducible over Z. So by
Gauss’ theorem, it is also irreducible over Q.
Alternatively, one can note that for a cubic polynomial to be reducible, it must have
some root in Q. So by proposition 12.1.1, the only possible roots are ±1,±1

2
or

±1
4
. Then it is straightforward to check directly that none are actually roots of the

polynomial. So it is irreducible over Q.

5. (a) Note that the polynomial x17 + 5x2 − 10x + 45 has a prime number 5 that divides
all the non-leading coefficients, and 25 does not divide 45. So Eisenstein’s criterion
implies that it is irreducible. Since Q is a field, then by theorem 11.1.10 the quotient
ring is always a field.

(b) It is not a field. We may take for example the element 2 + (x6 − 210x − 616) ∈
Z[x]/(x6 − 210x− 616) and show that it is not invertible. If it was invertible, then
there are polynomials a(x), b(x) ∈ Z[x] so that 2a(x)+b(x)(x6−210x−616) = 1.
Now evaluate this expression at x = 0, we get 2a(0) − 616b(0) = 1. This is a
contradiction as the LHS is even and RHS is odd. So 2 + (x6 − 210x− 616) is not
invertible in the quotient ring, it cannot be a field.

(c) By Q4c, the polynomial 4x3 − 6x − 1 is irreducible over Q. Therefore by theorem
11.1.10, the quotient ring is a field.

(d) Recall that an irreducible polynomial in R[x] is either of degree 1 or degree 2. Ac-
tually in our case, since the degree of the polynomial is odd, by intermediate value
theorem, it has a real root α, therefore it has a linear factor x − α. Since it is re-
ducible, the quotient ring is not a field.

Optional Part

1. Since f, g are coprime, there are a, b ∈ F [x] so that af + bg = 1 by corollary 11.1.5.
And by assumption we have h = cf = dg for some polynomials c, d ∈ F [x]. Therefore
c = c(af + bg) = caf + cbg = dag+ cbg = g(da+ cb). Then simply substitute to obtain
h = cf = fg(da+ cb). So fg divides h.

2. We may simply perform long division to compute: g = x3 − 2x+ 1 = (x+ 1)(x2 − x−
2) + x + 3. Set r1 = x + 3, then compute f = x2 − x − 2 = (x + 3)(x + 1) + 0. Now
the remainder is 0. So we may write g − (x+ 1)f = x+ 3 = gcd(f, g).

3. (a) In Z2[x], we have x4 + 1 = x4 − 1 = (x2 − 1)(x2 + 1) = (x2 − 1)(x2 − 1) =
(x+ 1)2(x− 1)2 = (x− 1)4. Clearly the linear factor x− 1 is irreducible.



(b) In Z3[x], we have x3+1 = x3+3x2+3x+1 = (x+1)3. Clearly x+1 is irreducible.

4. (a) Eisenstein’s criterion with p = 5.

(b) Consider reduction mod 2, we obtain x2 + x+ 1, this does not have a root in Z2 so
it is irreducible over Z2, so irreducible over Z, hence irreducible over Q by Gauss’
lemma.

(c) For degree 3, it suffices to check that it has no rational roots, which if exists, must
be either ±1 or ±7. By direct checking, none of these numbers are actually roots of
the polynomial.

(d) Consider two times the polynomial, whose irreducibility is equivalent. We have
8x3 − 6x + 1. Again it suffices to check that it has no roots, which could only be
±1,±1

2
,±1

4
,±1

8
if exist. One can directly check that none are roots.

(e) Likewise, irreducibility is equivalent to that of x5−3x4+3. One can conclude using
Eisenstein’s criterion with p = 3.

(f) Over Z2, the polynomial is reduced to x4 + x2 + 1 = x4 + 2x2 + 1 − x2 = (x2 +
x + 1)(x2 − x + 1). The degree two factors are irreducible since it has no roots in
Z2. On the other hand, over Z3, we get x4 +2x2 + x = x(x3 +2x+1). The degree
3 factor is irreducible as it has no roots in Z3.
Now if the original polynomial was reducible over Z. Then taking mod 2 and mod
3 will obtain factorization of the corresponding polynomials as a product of polyno-
mials of the same product types (for example, a product of a degree 2 with another
degree 2, etc). Since the irreducible factorization of the polynomial are different in
Z2 and Z3, it is impossible for the original polynomial to be reducible in Z.

5. We will prove the contrapositive, if f ∗ is reducible, say f ∗ = gh for some nonconstant
polynomials g, h ∈ k[x]. We claim that (f ∗)∗ = f and (gh)∗ = g∗h∗, therefore f =
(f ∗)∗ = g∗h∗ implies that f is also reducible, as g∗, h∗ are nonconstant polynomials
again.

It suffices to prove the claim, one may write for a degree n polynomial f , f ∗(x) =
xnf(1/x). Since f ∗ is again of degree n, we have (f ∗)∗(x) = xn( 1

x
)nf(1/ 1

x
) = f(x), as

desired.

Let deg g = l, deg h = m, so that deg(gh) = l +m, then (gh)∗(x) = xl+mg( 1
x
)h( 1

x
) =

xlg( 1
x
)xmh( 1

x
) = g∗(x)h∗(x), as claimed.

6. (a) No, because x3 − 1 = (x− 1)(x2 + x+ 1) is reducible.

(b) Yes, because the polynomial in question is irreducible according to Eisenstein’s
criterion for prime p = 3.

(c) Yes, the polynomial in question is irreducible as it has no roots. Note that a rational
root, if exists, would be ±1, which clearly are not the roots.

(d) No, the class represented by 3 is not invertible, indeed if it was invertible then there
are polynomials a(x), b(x) ∈ Z[x] so that 3a(x)+(x3+x+1)b(x) = 1. Substituting
x = 1, we get 3a(1) + 3b(1) = 1, clearly the LHS is divisible by 3 but the RHS is
not. This gives a contradiction. So 3 is not invertible in the quotient ring.

(e) No. (17) is the whole field, since for any q ∈ Q, q = q/17 · 17 ∈ (17). So the
quotient ring is the zero ring, which is not a field.



(f) Yes. As we have seen from the lecture, this is the ring of integers modulo 17, Z/17Z,
which is a field, as any non-zero number has an inverse. (Any number x that is not
a multiple of 17 is coprime to 17 so there are a, b ∈ Z so that ax + 17b = 1 so a is
inverse to x modulo 17.

(g) Yes, it is a field. In fact, Z[x]/(2, x) ∼= Z2. To see this, define ϕ : Z[x] → Z2

by ϕ(f(x)) = f(0) mod 2. This is clearly a surjective ring homomorphism, so it
suffices to check that kerϕ = (2, x). The inclusion (2, x) ⊂ kerϕ is clear. To see
kerϕ ⊂ (2, x), let f(x) so that f(0) = 0 mod 2. Then f(0) = 2k for some integer k.
So we can write f(x) = 2k+a1x+ ...+anx

n = 2k+x(a1+ ...+anx
n−1) ∈ (2, x).

(h) Yes, by compulsory Q3. Or just note that the polynomial is irreducible.

(i) No, x2− 3 = (x−
√
3)(x+

√
3), the polynomial is reducible. So the quotient is not

a field.

(j) Yes, x2 + 3 is irreducible as x2 + 3 > 0 for any x ∈ R, so it has no root.

(k) No. In F5, 22 = 4 = −1, so the polynomial is actually reducible x2 + 1 = (x −
2)(x− 3). So the quotient is not a field.

(l) No, again an odd degree polynomial has a real root, so it is reducible.

7. Consider the contrapositive, if f is reducible, say f = ab for some nonconstant polyno-
mials a, b ∈ F [x], then deg f > deg a, deg b. We have f divides f = ab, but f cannot
possibly divide a or b for degree reasons.


